RATE OF CONVERGENCE FOR NON PARAMETRIC DENSITY ESTIMATION IN LINEAR PROCESS

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ARE for Testing; Convergence Rate of Kernel Density Estimation

The t-test is as defined in the previous lecture. It has slope 1/σ. The Mann-Whitney test rejects if 1 nm ∑ i,j I(Xi ≤ Yj) is large. Note. The Mann-Whitney statistic has a relationship with the area under the ROC curve (AUC) for classification algorithms with a tunable parameter. The ROC plot has one axis for proportion of false positives and one axis for proportion of true positives; as we mov...

متن کامل

Density estimation with non–parametric methods

One key issue in several astrophysical problems is the evaluation of the density probability function underlying an observational discrete data set. We here review two non-parametric density estimators which recently appeared in the astrophysical literature, namely the adaptive kernel density estimator and the Maximum Penalized Likelihood technique, and describe another method based on the wave...

متن کامل

non-linear study of various slit shear walls in steel structures

seismic retrofit strategies have been developed in the past few decades following the introduction of new seismic provisions and the availability of advanced materials and methods. it can be observed that new approaches to deal with more lateral forces are more innovative and more energy absorbent. in line with this, there is a growing trend toward the use of steel shear walls as a system with ...

15 صفحه اول

a non-parametric method for hazard rate estimation in acute myocardial infarction patients: kernel smoothing approach

background : kernel smoothing method is a non-parametric or graphical method for statistical estimation. in the present study was used a kernel smoothing method for finding the death hazard rates of patients with acute myocardial infarction. methods : by employing non-parametric regression methods, the curve estimation, may have some complexity.  in this article, four indices of epanechnikov, b...

متن کامل

Rapid parametric density estimation

Parametric density estimation, for example as Gaussian distribution, is the base of the field of statistics. Machine learning requires inexpensive estimation of much more complex densities, and the basic approach is relatively costly maximum likelihood estimation (MLE). There will be discussed inexpensive density estimation, for example literally fitting a polynomial (or Fourier series) to the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of informatics and cybernetics

سال: 1989

ISSN: 0286-522X

DOI: 10.5109/13407